CITY PALO ALTO

Market Analysis Report User-Financed FTTP Model

- City provides wholesale transport services to ISPs via active Ethernet system.
- Optimistic assumptions regarding costs and technology.
- Wide range of possible take rates considered, based on RKS research.
 - Base case assessed on take rates ranging from less than 1% to 21%.
 - Competitors not factored in, but they have a head start on meeting this demand.

Cost and technology assumptions largely based on past studies

Business model minimizes City's costs and risk

Construction cost: \$23,000

(including drops & share of node)

Tight cluster of subscribers next to a node makes the "Perfect" case

At \$3,000 each, eight subs would pay for construction costs

Construction cost: \$67,000

(including drops & share of node)

Random distribution on a typical block a more realistic, "Average" case

Eight subs at \$3,000 wouldn't even pay half the cost

Construction cost: \$78,000

(including drops & share of node)

Twenty-six subs at \$3,000 needed to recover Average case costs

A take rate of 79% is unattainable

Chart 5.1 Base Model Alternatives – Operating Results

Chart 5.2 Base Model Alternatives – Net Present Value

Could a citywide system pay for itself if operating revenue is added?

Some base model scenarios produce surpluses but not enough

Chart 5.12 Base Model with \$12M/\$2M Subsidies & 5% Annual Growth – Net Present Value

What would it take to make userfinanced FTTP pay for itself?

Aggressive, continuous growth & subsidies from dark fiber. Maybe.

- A fully user-financed citywide fiber-to-the-premise system is not possible to achieve in Palo Alto.
- An opt-in FTTP system can be built using a combination of upfront user fees and City financing.
- There is very little probability of the debt incurred being repaid through operations.
- Ongoing subsidies would be required, very likely in excess of the surpluses currently generated by the CPAU dark fiber system.

Conclusions

Market analysis report

Backup Slides

Item	Amount	Basis
Total passable parcels	20,879	180 Connect
Average parcels per block	33	180 Connect and map data
Average new system fiber feet required per parcel	53	180 Connect
Fiber installation cost per foot	\$28.48	180 Connect and CPAU
Fiber drop and equipment per home	\$622	180 Connect
Cost of building a node	\$90,000	CTC and TVA research
Maximum nodes needed to cover City	87	CTC
Blocks served by one node	7	Calculation
City inside plant	\$140,000	TVA research
Project design and management, as a percentage of direct construction costs	10%	TVA research

Table 3.1 – Capital cost metrics and estimates

Capital cost assumptions

Optimistic assumptions were made about costs & technology

Item	Amount	Basis	
Fiber plant maintenance, per route mile per year	\$1,000	Small, urban system costs	
Node and site operations, per location per year	\$1,200	Electrical and physical maintenance costs	
Network operations per year	\$60,000	Outsourcing estimate	
Active plant maintenance per year	3%	Percentage of capital cost	
Interconnect per year	\$30,000	Shared facilities estimate	
Subscriber equipment maintenance per year	\$4,500	Peer systems	
Personnel per year	\$238,000	CPAU costs, based on total 2 FTEs spread over 5 positions	
Sales, general and administrative	\$55,000	Peer systems	

Operating cost assumptions

Optimistic assumptions were made about costs & technology

Table 3.3 Demand for user-financed FTTP in Palo Alto

Upfront fee	\$1,000	\$2,000	\$3,000	\$5,000
Monthly fee	\$75	\$100	\$100	\$100
Base case	21.2%	10.6%	4.3%	0.5%
Pessimistic scenario	13.2%	6.6%	2.7%	0.3%
Optimistic scenario	39.7%	19.9%	8.0%	0.9%

Range of take rates considered

Pessimistic interpretation probably closest to reality

Chart 5.5 Optimistic Scenario – Operating Results Chart 5.6 Optimistic Scenario – Net Present Value \$3,000 \$10 Thousands of dollars Millions of dollars \$0 \$2,200 (\$10) \$1,400 (\$20) \$600 (\$30) (\$40) (\$200) (\$50) (\$1,000)Year 1 Year 20 Year 20 Year 1 - \$2,000/\$100 - \$3,000/\$100 - \$5,000/\$100 \$1,000/\$75 \$1,000/\$75 - \$2,000/\$100 - \$3,000/\$100 - \$5,000/\$100

Optimistic and pessimistic demand scenarios

Results shift but bottom line remains same: negative NPV

Chart 5.7 Base Case with 5% Annual Subscriber Growth – Net Present Value

Chart 5.8 Optimistic Scenario with 2% Annual Subscriber Growth – Net Present Value

Continuous growth assumptions

Not sufficient to produce positive NPV in 20 years

Chart 5.9 Base Model with \$10M/\$1M Subsidies - Net Present Value

Chart 5.10 Base Model with \$10M/\$1M Subsidies & 5% Annual Growth – Net Present Value

Adding subsidies from dark fiber system operations gets it closer

With continual sub growth, NPV goes positive at extremes

Chart 5.11 Base Model with \$12M/\$2M Subsidies – Net Present Value

Chart 5.12 Base Model with \$12M/\$2M Subsidies & 5% Annual Growth – Net Present Value

Larger subsidy improves results

Even so, base case NPV never goes positive

Contact: Steve Blum Tellus Venture Associates +1-831-582-0700 steveblum@tellusventure.com www.tellusventure.com